CONFIDENTIAL
CONFIDENTIAL
Security Development Lifecycle
(SDLC)
Approved: Andrew Migliore
Reviewed: 2020-06-14
Overview
This document outlines policies that dictate how personal information data is accessed and
handled as we develop, debug, and triage the software we create. These policies ensure that
those who do have access understand their responsibilities, because even a secure
environment can be compromised by a single individual. Failure to properly protect sensitive
data during application development and deployment could expose the business and customers
to unacceptable consequences.
So what does sensitive data mean?
Privileged or proprietary information which, if compromised through alteration, corruption, loss,
misuse, or unauthorized disclosure, could cause serious harm to the organization or individual
owning it.
Common security problems involving sensitive data
● Cleartext storage of sensitive data
● Cleartext transmission of sensitive data
● Insecure cryptographic storage of sensitive data
● No encryption on sensitive data
● Inadequate access controls to sensitive data
Security Development Lifecycle (SDLC) Roles
Every person involved in the development of RADAR must play a role in addressing and
ensuring the security of our product and the handling of sensitive data. These roles are:
Management
● Knows that security is a reputation, customer-satisfaction, and cost-management issue.
● Understands security issues at a high level to make overall planning decisions.
● Develops security policies that communicate roles and responsibilities to the team.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 1
CONFIDENTIAL
Architect / Lead
● Owns overall technical and security design.
● Understands security concerns well to avoid exposing security exploits.
● Establishes core security principles that developers use during implementation.
● Manages awareness of security issues during design and development.
● Actively reviews and consults with the team on pull requests.
Developer
● Implements a design or function in code with security in mind.
● Fixes security vulnerabilities that result from coding errors.
● Understands secure coding best practices in detail and applies them.
QA
● Ensures security issues are caught before the application is released.
● Executes security testing (not functional testing) to find potential vulnerabilities.
● Maintains a detailed understanding of attack techniques and current threats.
Management — Understanding the business Issues
Risk
The accidental or malicious exposure of sensitive data can result in high-impact financial loss
and/or a negative impact on customer perception and business integrity. It is imperative that we
take precautions to avoid potential attacks that take advantage of the exposure of sensitive
data. For example, when passing sensitive data over a network or allowing remote access to a
storage concern containing sensitive data.
The financial impact of security breaches that result from loss of customers’ sensitive data has
become a huge reality. Financial loss is only one of the significant ways exposure of sensitive
data can negatively impact a business. Legal impact and loss of customer trust quite often
accompany the financial risks. Business decision makers should consult with their legal counsel
to evaluate the legal risks to the organization if sensitive data is leaked (see Incident Response
Policy & Plan).
Architect — Identifying risks to sensitive data
Identifying the Problem
The architect must identify and understand the nature of all information maintained by the
system, and how that information is stored and transmitted. It is also important to understand
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 2
CONFIDENTIAL
the potentially sensitive nature of text used in error messages and other status information that
is delivered to an end user. Information presented in the text of error/status alerts might provide
an attacker with useful system or end user information that enables an attack.
Sensitive data requires better and more complete protection than non-sensitive data. Although
non-sensitive data should be given appropriate protections, it will require more time and
resources to ensure that security measures for sensitive data are properly implemented.
Common Attacks
Two common attack scenarios that take advantage of exposed sensitive data are direct attacks
to gain unauthorized access to data and opportunistic use of error messages or status
information to disclose paths to sensitive data. The information leaked in messages is usually
not confidential, but internal IP addresses or file system path data might be useful to an attacker
to aid further attacks.
Implementing Defenses
Implementing correct defenses to mitigate exposure of sensitive data vulnerabilities involves
first identifying how the data has been exposed, and then coming up with appropriate
mitigations to close the holes. The process steps are:
1. Build or analyze an up-to-date threat model.
2. Itemize all data stores and data flows in the threat model.
3. Determine which of these data flows and data stores could potentially expose sensitive
data.
Threat Model
When implementing defenses, developers should consult an accurate and up-to-date threat
model for the software being developed. Because all data stores and data flows in the threat
model are subject to information disclosure threats, the architect must determine which of the
data stores holds sensitive information, and those that do must be called out as requiring
special attention to make sure the data is not leaked.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 3
CONFIDENTIAL
Figure A. example threat model for RADAR
The threat model above shows a request flowing from the user through a browser, to the web
server and database server and how the response flows back. All requests are logged and the
system is managed by DevOps by tunneling through the bastion and using an administration
and configuration tool such as Ansible and Cloud Formation.
When determining risks, the highest risk flows should be analyzed first i.e. those that cross trust
boundaries. These are in Figure A:
● 2.0 -> 8.0 (Browser to web server)
● 8.0 -> 2.0 (Web server to browser)
● 8.0 -> 11.0 (Web server to database server)
● 11.0 -> 8.0 (Database server to web browser)
Once data stores and data flows are established, the architect will determine which of these
could potentially hold sensitive, confidential, or personal information. All data flows on a
sensitive path must be protected.
Mitigations
Information disclosure threats are mitigated with encryption and access control mechanisms e.g.
permissions and access control lists (ACLs.) For highly-sensitive data at rest, a combination of
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 4
CONFIDENTIAL
permissions and encryption should be used. If possible, the system should use the
infrastructure within the operating system (OS).
Use encryption
For symmetric encryption, the Advanced Encryption Standard (AES) should be used rather than
the Data Encryption Standard (DES), 3DES, or RC4 unless backward-compatibility with an older
application that does not support AES is required. For RADAR this should not be the case.
Whenever possible, AES33 should be used for the encryption algorithm because of its strength
and speed. Several FIPS-approved algorithms are available for integrity checking, including
HMAC-SHA, Cipher-Based Message Authentication Code (CMAC), and Counter with Cipher
Block Chaining-Message Authentication Code (CCM).
It is always necessary to make sure that any encryption mechanism uses good key
management practices. Good key management practices should include:
● Appropriate key generation (large keys with high entropy).
● Secure key storage and protection.
● Secure key exchange.
● Key updating.
Additional information about correct key management is available in Recommendation for Key
Management – Part 1: General , published by the National Institute of Standards and
Technology (NIST).
Protecting data over a network requires the use of encryption. Like encryption for data at rest,
use existing libraries and infrastructure where possible. For data on the network, this
recommendation comes down to using Transport Layer Security (TLS).
Use existing tools
Taking advantage of reusable policy or infrastructure rather than writing new code is another
mitigation. For example, if it makes sense to do so, use the OS services to encrypt files rather
than encrypting the data with application software.
Prevent sensitive leaks in error messages
An effective way to mitigate the risk of leaking sensitive data through error messages is to
funnel all errors and warnings through a single checkpoint in the application. This single
checkpoint determines who sees what data. For example, a remote, unauthenticated user
should see very little warning information. In contrast, a local administrator should see all
information. Regardless of the user type, full error details should be written to an
administrator-readable log file. An administrator can read the full error information to help
determine why an operation failed.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 5
CONFIDENTIAL
Creating an administrator-readable log file requires applying a discretionary access control list
(DACL) to the log file with the following access control entries (ACEs):
● Everyone (Write)
● Administrators (Full Control)
A file with this DACL is often called a “drop-box” because anyone can write to the file, but only
trusted users can read the file.
Prevent sensitive leaks in email messages
Given the insecure nature of email unless using direct routing or secure solutions such as
ProtonMail, the product and development team should be cognizant of not exposing any data
via emails that might contain sensitive data even if that is not it’s intended purpose. For
example, titles and descriptions are free form text fields yet the customer might store PHI/PII
information in these fields. We should treat all such potential sensitive fields as though they are
since we cannot control the content. Email messages from our products should be scrutinized
and adjusted to account for this possibility.
Developer — Understanding the issues
The developer must make sure that the defenses designed to protect sensitive data are
appropriately implemented and do not suffer from oversights that could open the system to
attack, such as insecure key management and insecure key lengths or home-grown
cryptographic algorithms.
Examples of what not to do during implementation include:
● Using non-random encryption keys.
● Hard-coding encryption keys in application code.
● Using small encryption keys.
● Using outdated, home-grown, or insecure crypto algorithms.
Encryption keys must be protected like any other sensitive data and must be generated using
appropriately secure mechanisms. Please refer to the OpSec policies for more information.
If an application stores information in a file system or a web server or in a registry, then the
developer should consider encrypting that information.
Insecure Scrubbing
All sensitive data must be removed from memory when it is no longer needed by the application.
However, there are scenarios where some data scrubbing functions don’t work as expected.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 6
CONFIDENTIAL
Beware of compiler optimizations that may undermine this. If code scrubs secrets in memory,
the developer should call functions that are not removed by the compiler.
Resources for developers
● OWASP Top Ten Cheat Sheet
QA — Verifying protection of sensitive data
The challenge for QA is to find sensitive data that should be protected but is not. The tester
should consult the threat model and note the sensitive data that must be defended from
disclosure.
An effective testing technique is to add known sentinel values to the sensitive data (e.g. social
security number or credit card number like 123-45-678) then see if that data occurs in plaintext
either on the network or in storage.
In a data-driven, web-based application, a tester should add sentinel values to the test data, and
then set up a protocol analyzer to examine every packet that enters and leaves the web server
looking for the sentinel data.
Another test is to run the application through an exhaustive usability test and then scan the disk,
sector-by-sector, for the sentinel values. It is possible that the sensitive data was written to a log
file or a temporary file. By doing a sector-by-sector search, a tester can find the data if it is not
erased correctly.
Penetration testing will be performed at least annually.
Resources for Testers
● OWASP Testing Guide for SSL-TLS
● OWASP Testing Guide TOC
SDL
Training >> Requirements >> Design >>
Implementation >> Verification >> Release >>
Response
Our Agile SDL requires applications to document the privacy implications of the information
used or processed by the application as necessary. In such an event, the architect documents
the use of data and who should have access to the information. This is currently done in
Confluence as Solution Concepts.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 7
CONFIDENTIAL
Other methods of protecting sensitive data can be used; however, any such design must be
reviewed and approved by the OpSec team. In addition, any new design should be evaluated by
security personnel who understand cryptography well and understand how simple mistakes can
lead to exposure of sensitive information.
In order for everyone to understand their role and responsibilities, the OpSec team will hold
regular periodic training and educational meetings to go over policies and best practices e.g.
OWASP Top Ten lists.
Summary
Introducing security early in the software development life cycle, reveals problems like
inadequate data protection that can be addressed in underlying security requirements and
mitigated in design. From a financial and business perspective, it is very beneficial to eliminate
security problems as early as possible in the software development process. NIST estimates
that code fixes performed after software has been released are 30 times more costly to
complete than fixes during the design phase (see 1-10-100 rule).
The increased value of personally identifiable information (PII) and increased attacks against
software to gain access to sensitive information are clear evidence that extending the extra
effort to close potential security vulnerabilities that result from inadequate protection is critical. It
is imperative that our development team be proactive in this area and prepares to rapidly
address problems as they occur. It is equally important that our security policies and
requirements are in place when we design, implement, verify, and release code that proactively
helps protect customers from these attacks.
● For more information see RADAR Information Security Policy
● See also RADAR Security Code Review Policy
Policy Compliance
Compliance Measurement
The OpSec team will verify compliance to this policy through various methods, including but not
limited to, periodic walkthroughs, business tool reports, internal and external audits, and
feedback to the policy owner.
Training
Based on role and applicability, employees must complete policy-related training every other
year. This may include web-based training course, or instructor-led training programs.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 8
CONFIDENTIAL
Exceptions
Any exception to the policy must be approved by the OpSec team in advance.
Non-Compliance
An employee found to have violated this policy may be subject to disciplinary action, up to and
including termination of employment in addition to any civil and criminal liability. See Formal
Sanctions Policy for more details.
Maintenance
This policy will be reviewed by the Security Officer and the Privacy Officer at least once a year
or as deemed appropriate based on changes in technology, business or regulatory
requirements.
RADAR — Security Development Lifecycle (SDLC) v1.3-190614--AJM 9

Security Code Review Policy
Approved: Andrew Migliore, Neva DePalma
Reviewed: 2020-06-14
Overview
All product code to be released must be reviewed and documented either through Pull
Requests (PR) or pair programming and must go through a Clear to Ship meeting before being
deployed. No exceptions .
For information on managing Pull Requests see:
https://help.github.com/articles/using-pull-requests/
Review process
As a reviewer you should know the types of security issues that are common for the application
(e.g. web application) you are reviewing as well as any specific code changes that should be
reviewed. You should consider the following categories to determine the focus of the review:
● SQL injection
● Cross-site scripting
● Input/data validation
● Authentication
● Authorization
● Sensitive data
● Code access security
● Exception management
● Data access
● Cryptography
● Unsafe and unmanaged code use
● Configuration
● Threading
● Undocumented public interfaces
(see also our SDLC and Threat Model, and the top “ten” lists from OWASP and SANS)
Determine what types of issues you are looking for. For example, consider the following:
● General issues that affect confidentiality, integrity, and availability.
● Issues related to the application's security quality of service requirements.
● Issues related to the application's compliance requirements.
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 1
CONFIDENTIAL
● Issues related to the technologies that the application uses.
● Issues related to the functionality the application exposes.
Consider the questions
● Which common coding errors apply to the code you are reviewing?
● What are the technologies used in the application?
○ Is there a database?
○ Does the component present user defined data on a Web page?
○ Does the component interact with native code or other libraries?
○ Do users supply input to the component, either directly or through an
intermediary?
● Which of the identified threats from the threat model (see SDLC) apply to the code you
are reviewing?
After you determine what applies, you can identify areas for which the risk has not been
mitigated.
Determine objectives
Examples of security code review objectives:
● Make sure that all untrusted input to the component is passed to a validation routine
before it is used.
● Check error handling to make sure that exceptions are caught consistently and caught
close to their source.
● Check calculations whose results are used for memory allocation or buffer access for
numeric overflow or underflow.
● Check cryptographic routines to make sure secrets are cleared quickly.
Review code with specific goals, time limits, and knowledge of the issues you want to uncover.
Tool assisted scans
All code should be evaluated with static source analysis (SSA) tools.
First perform a scan of the code to find an initial set of issues and to discover hot spots where
additional security issues are likely to be discovered in later steps.
Static analyzers tend to be good at finding careless code practices, such as missing error
handlers, empty catch blocks, integer overflows, and scoping problems.
If you are unable to use a static analysis tool, you can perform text searches (e.g. using grep or
find on unix) on the code base looking for common patterns.
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 2
CONFIDENTIAL
Note that analysis tools frequently find false positives but on the other hand do not to develop a
false sense of security if an automated scan shows no issues in the code. This does not mean
that the code is free of vulnerabilities!
For example for the Go language, we currently use Meta Linter that aggregates a large set of
SSA tools that can assist with finding problems.
Supported tools:
● go vet - Reports potential errors that otherwise compile.
● go vet --shadow - Reports variables that may have been unintentionally shadowed.
● gotype - Syntactic and semantic analysis similar to the Go compiler.
● deadcode - Finds unused code.
● gocyclo - Computes the cyclomatic complexity of functions.
● golint - Google's (mostly stylistic) linter.
● varcheck - Find unused global variables and constants.
● structcheck - Find unused struct fields.
● aligncheck - Warn about un-optimally aligned structures.
● errcheck - Check that error return values are used.
● dupl - Reports potentially duplicated code.
● ineffassign - Detect when assignments to existing variables are not used.
● interfacer - Suggest narrower interfaces that can be used.
● unconvert - Detect redundant type conversions.
● testify - Show location of failed testify assertions (disabled by default).
● test - Show location of test failures from the stdlib testing module (disabled by default).
● gofmt -s - Checks if the code is properly formatted and could not be further simplified.
● goimports - Checks missing or unreferenced package imports.
Manual scans
A reviewer should complete a manual scan of the code to better understand and to recognize
patterns. This should be a quick walk through that takes no more than 10 percent of the review
time. In particular, you should review the code with the following questions in mind:
● Input data validation.
○ Does the application have an input validation architecture?
○ Is validation performed on the client, on the server, or both?
○ Is there a centralized validation mechanism, or are validation routines spread
through the code base?
● Does the application authenticate or authorize users?
● Does the code isolates separate accounts during queries?
● What roles are allowed and how do they interact?
● Is there custom authentication or authorization code?
● Error handling code. Is there a consistent error handling architecture?
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 3
CONFIDENTIAL
○ Does the application catch and throw structured exceptions?
○ Are there areas of the code with especially dense or sparse error handling?
● Complex code. Are there areas of the code that appear especially complex?
● Cryptography. Does the application use cryptography?
The result should be a set of areas that deserve further analysis.
Review code for security issues
Look for common security vulnerabilities. Trace paths through the code that are most likely to
reveal security issues. Use a question-driven approach in conjunction with other techniques
such as control flow and dataflow analysis.
● Control flow analysis
Control flow analysis is the mechanism used to step through logical conditions in the
code. The process is:
○ Examine a function and determine each branch condition. These can include
loops, switch statements, if statements, and try/catch blocks.
○ Understand the conditions under which each block will execute.
○ Move to the next function and repeat.
● Dataflow analysis
Dataflow analysis is the mechanism used to trace data from the points of input to the
points of output. Because there can be many data flows in an application, use the code
review objectives to focus the work. The process is:
○ For each input location, determine how much you trust the source of input.
○ Trace the flow of data to each possible output.
■ Note where there is data validation.
○ Move to the next input and continue.
○ Review input and output sources
■ Public interfaces
■ User interface
■ Database interaction
■ Socket interaction
■ File I/O
■ Pipes
Note: Prioritize areas where the code crosses trust boundaries.
Trust Boundaries
It can be difficult to determine how much you trust each input source. The code should not trust
input that comes from outside its component, and should fully validate all data. For performance
and maintainability reasons this may not always be practical.
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 4
CONFIDENTIAL
High trust:
● Input from code you are reviewing inside the component.
● Input that comes from known good, strongly named, managed or signed/hashed
libraries.
● Input from a database that is used only by the component and that contains data which
you can prove has been properly validated and is therefore correct by construction.
● Network data that has been signed by a known good source and is protected by IPSec
or TLS.
Medium trust:
● Input from known good libraries that have not been strongly named or signed, but are
local to the server and vendored.
● Input from a public interface that should only be accessible to trusted users.
● Input from a user interface component that should only be accessible to trusted users.
● Network data that should not be accessible to an untrusted user, such as a segmented
LAN internal to the datacenter.
Low trust:
● Input that comes from libraries that have not been strongly named or signed and are
located on the client.
● Input that comes from client code.
● Input that comes over the network.
● Input that comes from a file.
● Input that comes from a public interface that is accessible to any user.
● Input that comes from the user interface component that is accessible to any user.
● Input that comes from a database that is shared with other applications.
Carefully examine the code during the review to make sure that input validation is performed
rigorously on low-trust input and performed adequately on medium-trust input.
Pay attention to areas where the data is parsed and may go to multiple output locations. Pay
attention to intermediary output locations. Trace data back to its source, and assign trust based
on the weakest link.
Hotspots to look for
● SQL injection
A SQL injection attack occurs when untrusted input can modify the semantics of a SQL
query in unexpected ways. As you review the code, make sure that the SQL queries are
parameterized and that any input used in a SQL query is validated.
● Cross-site scripting
Cross-site scripting occurs when an attacker manages to inject script code into an
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 5
CONFIDENTIAL
application so that script code is echoed back and executed in the security context of the
application. This can allow an attacker to steal user information, including forms data and
cookies. This vulnerability can be present whenever a Web application echoes unfiltered
user input back to Web content.
● Data access
Look for improper storage of database connection strings and proper use of
authentication to the database.
● Input/data validation
Look for client-side validation that is not backed by server-side validation, poor validation
techniques, and reliance on file names or other insecure mechanisms to make security
decisions.
● Authentication
Look for weak passwords, clear-text credentials, overly long sessions, and other
common authentication problems.
● Authorization
Look for failure to limit database access, inadequate separation of privileges, and other
common authorization problems.
● Sensitive data
Look for mismanagement of sensitive data by disclosing secrets in error messages,
code, memory, files, or the network.
● Unsafe code
Look for potential buffer overflows, array out of bound errors, integer underflow and
overflow, as well as data truncation errors. Unit tests and compilation can help catch
these type of issues early.
● Hard-coded secrets
● Look for hard-coded secrets in code by looking for variable names such as "key",
"password", "pwd", "secret", "hash", and "salt".
● Poor error handling
Look for functions with missing error handlers or empty catch blocks.
● Code that uses cryptography
Check for failure to clear secrets as well as improper use of the cryptography APIs
themselves.
● Undocumented public interfaces
Undocumented interfaces should not be in our code, they are almost never given the
same level of design and test scrutiny as other code.
● Threading or concurrency problems
Check for race conditions and deadlocks, especially in static methods and constructors.
Continuous improvement
We do not want to repeat the same mistakes, when a flaw is detected the Lead Developer
should perform a root-cause analysis, and adjust processes, tools, or skills to avoid recurrence
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 6
CONFIDENTIAL
of the problem in the future. Training the whole team on these issues is critical to prevent issues
in the future.
Security awareness training/education
The OpSec team will hold regular periodic training and educational meetings to go over policies
and best practices e.g. OWASP Top Ten lists. The Architect and dev leads are responsible to
provide oversight during pull requests for the rest of the development team.
Policy Compliance
Compliance Measurement
The OpSec team will verify compliance to this policy through various methods, including but not
limited to, auditing the pull requests, and feedback to the policy owner.
Training
Based on role and applicability, employees must complete policy-related training every other
year. This may include web-based training courses, or instructor-led training programs.
Exceptions
Any exception to the policy must be approved by the OpSec team in advance.
Non-Compliance
An employee found to have violated this policy explicitly by attempting to merge in code without
going through the review process may be subject to disciplinary action, up to and including
termination of employment. See Formal Sanctions Policy for more details.
Maintenance
This policy will be reviewed by the Security Officer and the Privacy Officer at least once a year
or as deemed appropriate based on changes in technology, business or regulatory
requirements.
RADAR — Security Code Review Policy v1.6-2020-06-14-AJM 7

CONFIDENTIAL
Infrastructure as Code (IaC) &
Patch Management Policy
Approved: Andrew Migliore, Neva Depalma
Updated: 2020-02-27
Overview
As a software engineering organization we have adopted the twelve-factor app methodology for
building software-as-a-service apps that use declarative formats for automation and are suitable
for deployment on modern cloud platforms, thus obviating the need for traditional manually
managed servers and systems administration (see https://12factor.net/ ).
We have also chosen AWS as our cloud platform and use hardened base machine images to
stand up new compute instances.
Purpose
This document provides the processes and necessary guidelines to:
● Maintain the integrity of network systems and data by creating base machine images
(using AWS AMIs, Ansible and other IaC tools) that have been updated with the latest
OS and application security patches in a timely manner as defined below.
● Establish a baseline methodology and timeframe for patching and confirming appropriate
patch-management compliance.
Scope
The processes addressed in this document affect all servers in production managed by the
DevOps team.
Common Vulnerability Scoring System
Rating CVSS Score Timeframe to Patch (days)
Low 0.1 - 3.9 <= 180
Medium 4.0 - 6.9 <= 90
High 7.0 - 8.9 <= 21
Critical 9.0 - 10.0 <= 3
RADAR — Infrastructure Buildout & Patch Management Policy v1.5-20200227-AJM 1
CONFIDENTIAL
Process
1. Patches will be assessed by the OpSec team based on the severity and risk of the
vulnerabilities addressed by the patch
2. Patches will be deployed by the DevOps team once changes have been approved.
3. Always apply patches from a trusted source.
a. This is often from the OS specific software package management tool e.g. apt or
yum.
4. Test patches when necessary to identify any adverse effects.
5. Create pull request for any Ansible or AMI changes.
6. Deploy patches
a. Patches are to be deployed, in general, as soon as they are released based on
the criticality (often Low and Medium scored patches have already been applied
by AWS in the base AMI) but no later than the schedule stated above.
b. Out-of-Band security patches should be deployed ASAP to production systems
for Critical and High CVEs.
7. Exceptions
a. Systems or applications that cannot be patched to resolve a known vulnerability
must have the justification documented by the OpSec team, and necessary
security controls will be implemented to mitigate the vulnerability until the system
can be patched.
b. Systems that transmit or store protected data and cannot be patched (e.g. there
is no patch available yet) will be brought to the attention of the Privacy Manager.
Necessary security controls to compensate for the vulnerability will be
implemented by the OpSec / DevOps teams.
Patch-Compliance
The OpSec team will analyze various reporting tools when determining patch compliance.
1. All members of the OpSec team will monitor the CVE and NVD databases for relevant
security bulletins.
2. OWASP Zap and Tenable Nessus will be used in conjunction with other tools to
determine externally exposed vulnerabilities.
3. GitHub’s Security Alert feature will be configured to be always on in order to notify the
whole product team of known vulnerabilities.
4. Periodic vulnerability assessments will be performed by running vulnerability scans at
least monthly and hiring external reputable third party for annual penetration testing.
RADAR — Infrastructure Buildout & Patch Management Policy v1.5-20200227-AJM 2
CONFIDENTIAL
Resources
Please refer to the online Confluence documentation for How-Tos for baking base Linux AMIs.
Policy Compliance
Compliance Measurement
The OpSec team will verify compliance to this policy through various methods, including but not
limited to, periodic walkthroughs, business tool reports, internal and external audits, and
feedback to the policy owner.
Training
Based on role and applicability, employees must complete policy-related training every other
year. This may include web-based training course, or instructor-led training programs.
Exceptions
Any exception to the policy must be approved by the OpSec team in advance.
Non-Compliance
An employee found to have violated this policy may be subject to disciplinary action, up to and
including termination of employment in addition to any civil and criminal liability. See Formal
Sanctions Policy for more details.
Maintenance
This policy will be reviewed by the Security Officer and the Privacy Officer at least once a year
or as deemed appropriate based on changes in technology, business or regulatory
requirements.
RADAR — Infrastructure Buildout & Patch Management Policy v1.5-20200227-AJM 3

CONFIDENTIAL
DDoS Risk Mitigation Policy
Approved: Andrew Migliore, Neva DePalma
Reviewed: 2020-06-25
Purpose
Key considerations in the mitigation of any volumetric DDoS attacks must include the availability
of transit capacity (and diversity) and protecting resources against attack traffic.
RADAR’s main risk mitigation strategy against infrastructure and application layer DDoS attacks
is to rely on AWS services for resiliency.
AWS
The AWS infrastructure is DDoS-resilient by design and is supported by DDoS mitigation
systems that can automatically detect and filter excess traffic. RADAR has been implemented
and deployed upon these services to take advantage of these capabilities to handle attacks.
The following is a summary of the AWS services and their capabilities:
RADAR DDoS Risk Mitigation v1.2-2020-06-25-AJM 1
CONFIDENTIAL
Resiliency Strategies
Services used by RADAR within AWS Regions, like Elastic Load Balancing (ELB) and Elastic
Compute Cloud (EC2) allow RADAR to scale (vertically and horizontally) to handle unexpected
volumes of traffic within a given region.
Load Balancing
Larger DDoS attacks can exceed the resources of a single EC2 instance. To mitigate these
attacks, we use ELB to automatically scale out horizontally (based on an ELB policy) by
distributing traffic across many backend instances to manage larger volumes of unanticipated
traffic.
In addition, ELB accepts only well-formed TCP connections which means that many common
DDoS attacks, like SYN floods or UDP reflection attacks will not be accepted by ELB and will
not be passed on to the RADAR’s application layers.
Instance Size
RADAR can also scale vertically by using larger instances that:
● Support 10 Gigabit network interfaces
Each instance is therefore able to support a larger volume of traffic helping prevent
interface congestion for any traffic that has managed to reach application EC2 instances.
● Support Enhanced Networking Support
Each instance therefore has higher I/O performance and lower CPU utilization that
improves the ability of the instance to handle traffic that is larger in packet volume.
Web Application Delivery & Domain Name Resolution
Services that are available in AWS edge locations, like CloudFront and Route 53, allows
RADAR to significantly increase its ability to optimize latency and throughput to end-users,
absorb DDoS attacks, and isolate faults while minimizing availability impact.
CloudFront only accepts well-formed connections to prevent many common DDoS attacks like
SYN floods and UDP reflection attacks. DDoS attacks are geographically isolated (close to the
source) which prevents the traffic from affecting other locations.
Route 53 is a highly available and scalable domain name system (DNS) service that is used to
direct traffic to RADAR. It includes advanced features like traffic flow, latency-based routing,
Geo DNS, health checks, and monitoring. Even if the DNS service is targeted by a DDoS attack,
with shuffle sharding, each name server in a RADAR record set corresponds to a unique set of
edge locations and Internet paths. This provides greater fault tolerance and minimizes overlap
RADAR DDoS Risk Mitigation v1.2-2020-06-25-AJM 2
CONFIDENTIAL
between customers. Anycast striping is also used so that each DNS request is served by the
most optimal location thus spreading load and reducing DNS latency.
Finally, Route 53 can detect anomalies in the source and volume of DNS queries and prioritize
requests from users that are known to be reliable.
Monitoring
We monitor our applications running on AWS using a variety of tools including CloudWatch.
CloudWatch allows us to collect and track metrics, collect and monitor log files, set alarms, and
automatically react to changes in our AWS resources. These metrics include:
GroupMaxSize Maximum size of the Auto Scaling group
Requests Number of HTTPS requests
TotalErrorRate Percentage of requests with HTTP status code 4xx or 5xx
CPUUtilization Percentage of allocated EC2 compute units currently in use
HTTPCode_ELB_4xx
HTTPCode_ELB_5xx
The number of HTTP 4xx or 5xx error codes generated by the load balancer
NetworkIn The number of bytes received on all network interfaces by the instance
SurgeQueueLength The number of requests queued by the load balancer, awaiting a back-end
instance to accept connections and process the request
UnHealthyHostCount The number of unhealthy instances in each Availability Zone
RequestCount The number of completed requests that were received and routed to registered
instances
Latency The time elapsed, in seconds, after the request leaves the load balancer until a
response is received
BackendConnectionErrors The number of connections that were not successful
SpilloverCount The number of requests that were rejected because the queue was full
HealthCheckStatus The status of the health check endpoint
Another tool we can use to gain visibility into traffic targeting RADAR is VPC Flow Logs.
Attack Surface Reduction
In application development, we always look to limit the opportunities that an attacker may have
to target RADAR by limiting the extent to which the application is exposed to the Internet. We
use AWS security groups and network ACLs to limit exposure and control access.
RADAR DDoS Risk Mitigation v1.2-2020-06-25-AJM 3
CONFIDENTIAL
Policy Compliance
Compliance Measurement
The OpSec team will verify compliance to this policy through various methods, including but not
limited to, periodic walkthroughs, business tool reports, internal and external audits, and
feedback to the policy owner.
Training
Based on role and applicability, employees must complete policy-related training every other
year. This may include web-based training courses or instructor-led training programs.
Exceptions
Any exception to the policy must be approved by the OpSec team in advance.
Non-Compliance
An employee found to have violated this policy may be subject to disciplinary action, up to and
including termination of employment in addition to any civil and criminal liability. See Formal
Sanctions Policy for more details.
Maintenance
This policy will be reviewed by the Security Officer and the Privacy Officer at least once a year
or as deemed appropriate based on changes in technology, business or regulatory
requirements.
RADAR DDoS Risk Mitigation v1.2-2020-06-25-AJM 4
